Characteristics of an On-Chip Cache on NEC SX Vector Architecture

نویسندگان

  • Koki
  • KOBAYASHI
  • Ryusuke EGAWA
  • Hiroyuki TAKIZAWA
  • Hiroaki KOBAYASHI
چکیده

Thanks to the highly effective memory bandwidth of the vector systems, they can achieve the high computation efficiency for computation-intensive scientific applications. However, they have been encountering the memory wall problem and the effective memory bandwidth rate has decreased, resulting in the decrease in the bytes per flop rates of recent vector systems from 4 (SX-7 and SX-8) to 2 (SX-8R) and 2.5 (SX-9). The situation is getting worse as many functions units and/or cores will be brought into a single chip, because the pin bandwidth is limited and does not scale. To solve the problem, we propose an on-chip cache, called vector cache, to maintain the effective memory bandwidth rate of future vector supercomputers. The vector cache employs a bypass mechanism between the main memory and register files under software controls. We evaluate the performance of the vector cache on the NEC SX vector processor architecture with bytes per flop rates of 2B/FLOP and 1B/FLOP, to clarify the basic characteristics of the vector cache. For the evaluation, we use the NEC SX-7 simulator extended with the vector cache mechanism. Benchmark programs for performance evaluation are two DAXPY-like loops and five leading scientific applications. The results indicate that the vector cache boosts the computational efficiencies of the 2 B/FLOP and 1B/FLOP systems up to the level of the 4B/FLOP system. Especially, in the case where cache hit rates exceed 50%, the 2B/FLOP system can achieve a performance comparable to the 4B/ FLOP system. The vector cache with the bypass mechanism can provide the data both from the main memory and the cache simultaneously. In addition, from the viewpoints of designing the cache, we investigate the impact of cache associativity on the cache hit rate, and the relationship between cache latency and the performance. The results also suggest that the associativity hardly affects the cache hit rate, and the effects of the cache latency depend on the vector loop length of applications. The cache shorter latency contributes to the performance improvement of the applications with shorter loop lengths, even in the case of the 4 B/FLOP system. In the case of longer loop lengths of 256 or more, the latency can effectively be hidden, and the performance is not sensitive to the cache latency. Finally, we discuss the effects of selective caching using the bypass mechanism and loop unrolling on the vector cache performance for the scientific applications. The selective caching is effective for efficient use of the limited cache capacity. The loop unrolling is also effective for the improvement of performance, resulting in a synergistic effect with caching. However, there are exceptional cases; the loop unrolling worsens the cache hit rate due to an increase in the working space to process the unrolled loops over the cache. In this case, an increase in the cache miss rate cancels the gain obtained by unrolling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPEC OpenMP Benchmarks on Four Generations of NEC SX Parallel Vector Systems

We describe the performance characteristics of the SPEC OMP benchmarks on parallel vector supercomputers. Points of interest are vectorization, scalability and the comparison between different generations of the same family of NEC SX vector supercomputers. We relate the different performance development of the 11 different applications to different hardware properties of the machine and also to...

متن کامل

Porting the 3D gyrokinetic particle-in-cell code GTC to the NEC SX-6 vector architecture: perspectives and challenges

Several years of optimization on the cache-based super-scalar architecture has made it more difficult to port the current version of the 3D particle-in-cell code GTC to the NEC SX-6 vector architecture. This paper explains the initial work that has been done to port this code to the SX-6 computer and to optimize the most time consuming parts. After a few modifications, single-processor results ...

متن کامل

Performance evaluation of the SX-6 vector architecture for scientific computations

The growing gap between sustained and peak performance for scientific applications is a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to reduce this gap for many computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX-6 vector p...

متن کامل

A Performance Evaluation of the Cray X1 for Scientific Applications

The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and capacity computers primarily because of their generality, scalability, and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance...

متن کامل

Data Access Characteristics and Optimizations for Sun UltraSPARC T2 and T2+ Systems

Processor and system architectures that feature multiple memory controllers and/or ccNUMA characteristics are prone to show bottlenecks and erratic performance numbers on scientific codes. Although cache thrashing, aliasing conflicts, and ccNUMA locality and contention problems are well known for many types of systems, they take on peculiar forms on the new Sun UltraSPARC T2 and T2+ processors,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009